近日,中国科学院脑科学与智能技术卓越创新中心(赵郑拓研究组及李雪研究组)联合复旦大学附属华山医院(吴劲松/路俊锋团队),与相关企业合作,成功开展了中国首例侵入式脑机接口的前瞻性临床试验。该成果标志着我国在侵入式脑机接口技术上成为继美国之后,全球第二个进入临床试验阶段的国家,也是上海市脑机接口临床试验与转化重点实验室依托两家单位成立后的首项重要成果。
图1:中国首例无线侵入式脑机接口系统前瞻性临床试验术后项目团队合影留念
受试者是一位因高压电事故导致四肢截肢的男性。自2025年3月植入该脑机接口设备以来,系统运行稳定,术后至今一个多月未出现感染和电极失效的情况。仅用2-3周的训练,他便实现了下象棋、玩赛车游戏等功能,达到了跟普通人控制电脑触摸板相近的水平。该系统在未来获批注册上市后,有望显著改善完全性脊髓损伤、双上肢截肢及肌萎缩侧索硬化症患者等群体的生存质量。
世界领先的超柔性神经电极技术
图2:超柔性电极尺寸极小,仅约头发丝的1/100
与当前世界上唯一进入临床试验阶段的,代表业界最高水平的伊隆·马斯克创办企业Neuralink侵入式脑机接口系统中使用的神经电极相比,脑智卓越中心在神经界面技术上处于领先地位。
赵郑拓团队研制及生产的神经电极是目前全球尺寸最小、柔性最强的神经电极,截面积仅为Neuralink所使用电极的1/5到1/7,柔性超过Neuralink百倍,让脑细胞几乎‘意识’不到旁边有异物,最大程度上降低了对脑组织的损伤。该超柔性神经电极具备高密度、大范围、高通量、长时间的稳定在体神经信号采集能力,已相继完成在啮齿类、非人灵长类和人脑中长期植入和稳定记录验证,为解决植入式脑机接口前端电极组织相容性差和信道带宽窄的关键瓶颈问题提供了开拓性的方案。
兼具单神经元信号采集能力与低组织损伤特性的侵入式脑机接口系统
图3:植入体直径26mm、厚度不到6mm,是全球最小尺寸的脑控植入体,仅硬币大小
赵郑拓和李雪团队的侵入式脑机接口系统是国内唯一获得了注册型检报告且可以长期稳定采集到单神经元Spike信号的脑机接口系统,其毫秒级、单神经元水平的神经信号捕获特性为应用提供了良好的神经电信号数据基础。在手术友好程度方面,脑智卓越中心研制的植入体直径26mm、厚度不到6mm,是全球最小尺寸的脑控植入体,仅硬币大小,为Neuralink产品1/2。因此不需要整体贯穿颅骨,只需要在大脑运动皮层上方的颅骨上“打薄”出一块硬币大小的凹槽用以镶嵌设备,再在凹槽中打一个5毫米的穿刺孔。采用神经外科微创术式,在有效降低手术期风险的同时,显著缩短术后康复周期。基于成熟外科技术构建的完整操作体系,其标准化的操作流程更利于在各级医疗机构神经外科开展规模化应用。
此外,有别于Neuralink较多的冗余设计,该侵入式脑机接口系统是在神经科学原理指导下设计的,可以通过较少数量的植入电极实现跟Neuralink相似的控制水平。该低冗余量设计尽量减少对患者带来植入损伤,让患者收益风险比最高。
高鲁棒性、低延时、可自动适应的实时在线解码算法
实时在线解码是脑机接口技术的关键环节。该系统需在十几毫秒窗口期内完成神经信号的特征提取、运动意图解析及控制指令生成全流程。其核心挑战是建立毫秒级高精度响应的闭环控制链路,适应神经信号的非平稳性,并实现解码器与被试的双向动态适应,这对解码模型的动态适应性和计算效率提出了双重考验。
赵郑拓研究组通过自主研发的在线学习框架,创造性实现了神经解码器的动态优化。该解码框架采用参数自适应调节机制,协调解码器优化和神经可塑性,突破传统静态解码模型难以适应神经信号时变特性的局限性。结合柔性电极信号采集稳定性优势和高精度神经发放估计策略,实现了低延迟,高鲁棒性,跨天稳定的实时在线运动解码。
安全性和功能性在非人灵长类动物试验中得到验证
依托脑智卓越中心国际领先的非人灵长类研究平台,在开展人体试验之前,该系统的安全性和功能性已经在猕猴中得到了验证。侵入式脑机接口系统被植入到猕猴运动皮层的手部和手臂功能区,植入手术顺利完成后系统持续运行稳定,未出现感染和电极失效的情况。猕猴经过训练,已成功实现了仅凭神经活动即可敏捷且精准的控制计算机光标运动,并在此基础上实现目标引导下的脑控打字。
在平稳运行一段时间后,猕猴的植入体被手术安全取出,并更换新植入体在同一个颅骨开孔位置完成二次植入。术后系统持续运行稳定,同样未出现感染和电极失效的情况,猕猴快速适用新系统并流畅实现脑控光标。该手术的顺利完成验证了植入体通过二次手术升级换代的可行性。
精准定位与植入,靶向大脑运动控制中心
图4:中国首例无线侵入式脑机接口系统前瞻性临床试验手术现场,华山医院吴劲松教授与路俊锋教授做讨论
精准定位和植入是整个手术成功的关键。高精度的电极植入可以为后续的信号采集和解码奠定重要基础。在为受试者进行手术前,华山医院路俊锋教授团队采用了功能磁共振成像联合CT影像技术,重构了受试者专属三维模型与人脑运动皮层的详细功能地图以确保植入位置的精确性。手术当天,路俊锋教授团队借助高精度导航系统,在唤醒手术下将超柔性电极植入受试者大脑的运动皮层指定区域,整个手术过程精确到毫米级别,最大限度地保证了安全性和有效性。
重新连接世界,为运动功能障碍患者带来新希望
图5:受试者未来生活展望
下一步项目团队会尝试让受试者使用机械臂,使得他可以在物理生活中完成抓握、拿杯子等操作。后续还将涉及到对复杂物理外设进行控制,例如对机器狗、具身智能机器人等智能代理设备的控制,从而拓展他的生活边界。
以上工作获得上海市级科技重大专项“脑机接口关键技术与核心器件”、上海市科委战略前沿脑机接口专项项目,以及复旦附属华山医院、上海市脑机接口临床试验与转化重点实验室等机构的支持。
仅用于学术分享,若侵权请留言,即时删侵!